
Inetlab.MMS.MM7
.NET implementation of MM7 protocol for two-way MMS messaging

Table of Contents

 Documentation
 MM7 Client

 Getting Started
 MM7 Server

 Getting Started
 Change Log

javascript:void(0)
javascript:void(0)
javascript:void(0)

Getting Started with MM7Client
MM7 is the interface between MMSC and a value-added service provider (VASP). The MM7 interface is used to send MMS from
3rd party providers (e.g., a bank sending a statement or an advertiser sending publicity).

Send MMS from SMIL file

_client = new MM7Client(mmscUrl);

_client.AuthId = authId;
_client.AuthSecret = authSecret;
_client.VASPID = vaspid;
_client.VASID = vasid;
_client.SenderAddress = senderAddress;
_client.ServiceCode = serviceCode;

url - http or https URL of MMSC
authId - username for Basic authentication on the remote MMS Relay/Server.
authSecret - password for Basic authentication on the remote MMS Relay/Server.
vaspid - your identifier as VASP (Value Added Service Provider)
vasid - identifier of your application
senderAddress - the address of the message originator.
serviceCode - information supplied for billing purposes

SubmitRequest req = _client.CreateSubmitRequest();

req.Recipients.To.Add("+79171234567");

req.MessageClass = MessageClass.Personal;
req.DeliveryReport = true;
req.Subject = "Test";
req.Priority = Priorities.Normal;
req.ChargedParty = ChargedParty.Sender;
req.ContentHref = "/mms/mm7/mm7client";
req.TransactionID = DateTime.Now.Ticks.ToString();

try
{
 // Submit MMS Message as VASP
 SubmitResponse resp = await _client.Submit(smilFilePath, req);
 // Check response status
 if (resp.Status.StatusCode == 1000)
 {
 Console.WriteLine("MMS message has been sent successfully");

 }
}
catch (MM7Exception ex)
{
 Console.Error.WriteLine(ex.Message);
 Console.Error.WriteLine(ex.Status.Details);
}
catch (WebException ex)
{
 Console.Error.WriteLine(ex.Message);
}

Getting Started with MM7Server
Standalone MMS Server
The MMS messages from MMSC can be received with standalone MM7Server class. This class has several events that will raise as
soon as appropriate MM7 message is received. In the event handlers you can save the MMS content or perform any other
processing. You need to start the server with the method @Inetlab.MMS.MM7Server.Start().

public class MMSServerForVASPExample
{
 private MM7Server _server;

 public MMSServerForVASPExample()
 {

 _server = new MM7Server("http://localhost:9090/");
 _server.ServerMode = MM7ServerMode.VASP;
 _server.AuthScheme = AuthenticationSchemes.Basic;
 _server.Events.OnAuthentication = OnAuthentication;
 _server.Events.OnDeliverRequest = OnDeliverRequest;
 }

 public void Start()
 {
 _server.Start();
 }

 private Task<string> OnAuthentication(AuthenticationEventArgs e)
 {
 //check username
 if (e.UserName == "test")
 {
 string password = "password from db";

 // return password
 return Task.FromResult(password);
 }

 // not authenticated.
 return Task.FromResult<string>(null);
 }

 /// <summary> Raises when MMSC delivers MMS to VASP endpoint.</summary>
 private Task<DeliverResponse> OnDeliverRequest(DeliverReqEventArgs e)
 {
 //MMS received from MMSC on VASP MMS Endpoint.

 // Save all MMS message parts to the Delivered folder
 string path = Path.GetFullPath("Delivered");
 path = Path.Combine(path, e.Request.TransactionID);
 Directory.CreateDirectory(path);

 foreach (MMSPart part in e.Message.Parts)
 {
 part.Save(Path.Combine(path, part.GetFileName()));
 }

 return Task.FromResult(new DeliverResponse(e.Request));
 }
}

https://docs.inetlab.com/mm7/api/Inetlab.MMS.MM7Server.html

MMS Server in ASP.NET Core
It is possible to implement ASP.NET Core middleware with MM7Server class. See the MM7Server.AspNetCore sample application
in the Samples folder.

https://docs.inetlab.com/mm7/api/Inetlab.MMS.MM7Server.html

Changelog
[1.0.0] - 2022-02-16
Added

.NET Standard 2.0, .NET Core version
add IHttpContext interface to be able to wrap any HttpContext from HttpListner, ASP.NET or ASP.NET Core
MM7Client. Added support for web proxy
added ASP.NET Core sample

Changed
Simplified ILog interface
MM7Client implemented with HttpClient and all send methods are Task-based.

Fixed
System.ArgumentException: Item has already been added. Key in dictionary: 'binary'. when creating MediaMessage

[0.10.0] - 2018-04-20
Added

added two protected methods GetWebRequest and GetWebResponse.

[0.9.2] - 2018-01-02
Fixed

MM7Client should process SOAP Fault instead throwing of "Unknown server response".

Version 0.9.1 19.11.2016 -small fixes in demo application

Version 0.9.0 11.03.2016

added support of Basic and Digest authentication in MM7Client and MM7Server classes.
added ability to change ServerName in MM7Server.

Version 0.8.2 07.03.2016

add ability to get request parameters for the event handlers in standalone MM7Server

Version 0.8.1 06.03.2016

new logging classes
improved MIME classes
added ability to use Evaluation version as Full version after adding a license file to the project as embedded resource. You
can update nuget package of the library in your project and use always latest version.

Version 0.7.2 06.06.2014

fixed missing MM7Version in DeliverRequest

Version 0.7.1 30.10.2013

added workaround for non-standard error responses

Version 0.7.0 27.08.2012

added ability to send DRM content

Version 0.6.3 22.08.2012

addition of DeliveryCondition, ApplicID, ReplyApplicID, AuxApplicInfo, DRMContent fields to SubmitRequest

Version 0.6.2 17.08.2012

fix threading issue in MIME classes

Version 0.6.1 15.08.2012

adapt XML serialization to schema 5.3.0

Version 0.6.0 27.07.2012

added support of DeliveryReport and Read-Reply report

Version 0.5.12 31.01.2012

added ability to send SOAPAction HTTP header
process server responses without Content-Length HTTP header

Version 0.5.11 02.11.2011

handle GET requests to MMS server

Version 0.5.10 06.09.2011

improved parsing HTTP headers

Version 0.5.9 16.05.2011

added methods that helps to send custom DeliverRequest.

Version 0.5.8 06.12.2010

fixed charset of transfered text file within SMIL message

Version 0.5.7 01.11.2010

added ability to change MM7Version and MM7 Schema version
added ContentClass element for SubmitReq

Version 0.5.6 06.09.2010

added Submit method for sending MMS message from SMIL file

Version 0.5.5 25.08.2010

adapted to some vendor specific responses
fixed basic authentication
for class MM7Client added new method Submit with SubmitRequest parameter

Version 0.5.4 12.04.2010

adapted to some vendor specific requests

Version 0.5.3 08.04.2010

added trace of MMSServer

Version 0.5.2 10.09.2009

fixed From was empty in MMSMessage

Version 0.5.1 08.09.2009

fixed TimeStamp parsing

Version 0.5.0 26.08.2009

added ability to process request in ASHX files

Version 0.4.6 24.08.2009

fixed server.Stop() bug

Version 0.4.5 05.08.2009

added ability to change Content-Transfer-Encoding for MMSParts

Version 0.4.4 14.06.2009

improved MM7Client

Version 0.4.3 16.04.2009

added support of multipart.mixed MMS messages
added "Inetlab.MMS.MM7.Switch" to enable detailed information about requests and responses

Version 0.4.2 05.03.2009

added Timeout property to MM7Client

Version 0.4.1 28.02.2009

added xml declaration to request and response

Version 0.4 27.02.2009

fixed SenderAnddress type in the SenderIdentification

Version 0.3 01.10.2008

added MM7Client.ServiceCode property
allow to specify Charged Party in the Submit method.

	Inetlab.MMS.MM7
	Table of Contents
	Documentation
	MM7 Client
	Getting Started

	MM7 Server
	Getting Started

	Change Log

